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Abstract

The appearance of power law-like distributions for city populations is

a distinctive, recurring feature of human geography. We propose an ex-

planation for this phenomenon that reflects both variation in geography

and trade between locations. Realistically modeling geography as the

determinant of a location’s exogenous productivity and amenity value

results in lognormally distributed locational “fundamentals.” Given

these fundamentals, populations are lognormally distributed within a

broad class of quantitative spatial models and appear to follow a power

law for the most populous locations (i.e., cities). Simulations mirror

several empirical results in the literature on city population distribu-

tions.
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The distribution of city populations in most countries appears to follow

a power law. This distinctive empirical regularity is remarkable given the

substantially different contexts in which it has been observed, having been

documented extensively across countries,1, varying definitions of cities.2, and

different periods of human history spanning millennia.3 That is, a power

law-like distribution appears even when the meaning of “city,” the local exter-

nalities shaping cities, the level of development and structure of the economy,

and the integration of cities into national or global networks all vary greatly.

The prevailing explanation for this remarkable pattern is the concomitant

observation that, for many cities, population growth appears orthogonal to the

population level. A “random growth” process reflecting this phenomenon can

generate power law-like city population distributions, but the assumption of

random growth is inconsistent with the empirical evidence on the distribution

of cities in significant ways. Cities tend to recover rapidly following major

shocks,4 and growth does not appear random during transitions to new spatial

equilibria.5 Further, random growth explanations fail to capture the influence

of the observable characteristics of a place on the attractiveness of producing

or residing there. Random growth models imply the large populations of New

York City, Tokyo, and London are unrelated to their advantageous locations.

Moreover, many existing theories of the city size distribution are aspatial and

1A power law-like city distribution was first documented in Germany by Auerbach (1913)
and the early comparative literature began with Zipf (1949). A recent and comprehensive
comparative investigation is Soo (2005), which looks at 73 countries.

2Several papers have used nightlights data to define cities rather than administrative
borders, such as Jiang et al. (2014) and Dingel et al. (2021).

3Davis and Weinstein (2002) demonstrate a power-law relationship existed in pre-modern
Japan, while Barjamovic et al. (2019) show evidence of this pattern in Bronze Age Anatolia.

4Notable instances of recovery from shocks are documented in Davis and Weinstein
(2002), Brakman et al. (2004) and Davis and Weinstein (2008) following bombings, and
in Johnson et al. (2019) following pandemics.

5Desmet and Rappaport (2017) document the absence of the random growth phenomenon
for cities during the settlement of the American West.
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do not allow for interactions between locations to shape settlement patterns,

failing to capture the contribution of trade to the scale of the aforementioned

global cities.

We provide an explanation for the appearance of power law-like city size

distributions that allows both place and space to shape settlement patterns,

bridging the literatures on population distributions, economic geography, and

modern quantitative spatial models. Modern quantitative spatial equilibrium

models capture many of the forces that shape human geography.6 While these

models can rationalize population distributions in terms of recoverable lo-

cational “fundamentals,” they do not explain why the distributions of funda-

mentals or population take a particular form.7 The economic geography litera-

ture emphasizes that geographic attributes influence settlement patterns,8 and

we place this focus on observable geography within a modern spatial model.

Modelling fundamentals as resulting from variation in geographic attributes,

we demonstrate that the resulting city size distribution will appear to follow

a power law within a broad class of spatial models. The result is robust to

changes in model parameters, allowing us to explain the persistent appearance

of, and variation in, this distribution in different contexts. Given the persis-

tence of geography, our framework can explain the recovery of cities from

negative shocks. We also show that “random growth” is a characteristic of the

equilibrium, but not the force creating the distribution as in prior theories.

Our approach begins with a focus on the characteristics of population dis-

tributions. First, we argue that population distributions appear to be lognor-

6This literature includes Allen and Arkolakis (2014), Redding (2022), and Redding and
Rossi-Hansberg (2017).

7Given certain parameter values, these models can be inverted to recover fundamentals
to rationalize arbitrary, unrealistic vectors of “populations.”

8See Henderson et al. (2018) for a detailed investigation of the role of geography.
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mal and show why the lognormal distribution is difficult to distinguish from a

true power law in the tail. We demonstrate that, given sufficiently high vari-

ance of the log population, the often-identified “Zipf’s” power law will appear

for some truncation of the population distribution consisting of only highly

populous locations (i.e., cities).9 We discuss the frequent appearance of the

lognormal distribution, which results from many multiplicative processes (a

consequence of the central limit theorem applied in logs) as well as, surpris-

ingly, certain additive ones (applying a lemma from Marlow (1967)). We draw

on both of these properties when characterizing the population distribution.

We then investigate how heterogeneity in observable geographic attributes

influences the suitability of locations for production and habitation. We ar-

gue that a location’s fundamentals should be determined by its many geo-

graphic attributes. Some geographic attributes are uncorrelated within places

(like rainfall and topography), and the correlation of geographic attributes

between places declines with distance. Modelling fundamentals as multiplica-

tive functions of attributes with these two key properties results in locational

fundamentals which are lognormally distributed and spatial correlated, with

the degree of correlation declining with distance.10 Using a granular panel of

attributes, we show that the two properties are clear features of the real world.

Embedding this exogenous geography within a discrete version of the spa-

tial model in Allen and Arkolakis (2014), which nests many spatial models, we

demonstrate our key result that the equilibrium population will follow a log-

normal distribution. This result follows from each location’s own lognormal

9Zipf’s law is a specific power law frequently identified at the country level, characterized
by a slope of -1 on a plot of log-population and log-population rank. An example for the
U.S. can be see in Figure 1. We discuss this power law and the role of truncation in more
detail in Section 1.

10Our approach follows that of Lee and Li (2013), but with an additional focus on the
spatial distribution of the resulting fundamentals.
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fundamentals as well as trade with other locations. Within spatial models,

other locations enter additively into the equilibrium population condition. By

applying the lemma of Marlow (1967) to this sum, we are able to character-

ize the population distribution within a broad class of spatial models. We

demonstrate the success of the model at generating both lognormal full pop-

ulation distributions and power law-like city population distributions through

simulation. We explore how changes to local productivity spillovers, intra-

city congestion externalities, and inter-city transportation costs influence the

observed city-size distribution.

This paper touches on several topics within the spatial economics literature.

First, it relates to work characterizing the city size distribution. Some work

has argued that the city size distribution follows a Pareto distribution, such as

Gabaix (1999a,b), ignoring smaller settlements and interpreting the truncated

city size distribution as reflecting a true power law. Other work, such as

Eeckhout (2004), has argued that a lognormal distribution better describes

the full population distribution, appears similar to a Pareto distribution for

large observations like cities, and naturally captures deviations from a true

power law in the data. We argue in favor of the lognormal interpretation, and

show how lognormality emerges within a broad class of spatial models.

Second, we relate to work on the origin of power law-like city size distri-

butions. Many theoretical explanations of this phenomenon are based on the

similarly striking empirical observation that city growth rates often appear

unrelated to city population, referred to in the literature as Gibrat’s law.11

Much of the literature uses random growth as the basis for the appearance of

11The “law” is an application of the central limit theorem to the log of the product of
independent shocks, and was originally formulated to describe the growth of firms (Gibrat,
1931).
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a power law-like distribution, as in Gabaix (1999a), Gabaix (1999b), Blank

and Solomon (2000), Eeckhout (2004), Rossi-Hansberg and Wright (2007),

and Córdoba (2008). However, when subject to large negative shocks such

as war and disease, cities tend to recover rapidly to their prior position in

the distribution (Davis and Weinstein, 2002; Brakman et al., 2004; Davis and

Weinstein, 2008; Johnson et al., 2019). This “reversion” to the prior distri-

bution is incompatible with random growth theories. Further, Desmet and

Rappaport (2017) demonstrate that Gibrat’s law did not hold throughout the

historical settlement of the U.S. and only emerged after the end of westward

expansion. These facts are consistent with locational fundamentals being a

determinant of the observed population distribution in equilibrium, as argued

in Davis and Weinstein (2002). We build on earlier aspatial models that have

taken a fundamentals-based approach to explaining the population distribution

(Lee and Li, 2013; Behrens and Robert-Nicoud, 2015; Desmet and Rappaport,

2017), while adding a role for space lacking in prior theoretical work by placing

the exogenous geography within a spatial model.

A third related branch of literature focuses on the role of favorable geogra-

phy in explaining settlement patterns. The largest cities around the world tend

to be in locations that are good for production and offer quality-of-life benefits

to residents. A literature on the intuitive importance of natural characteristics

for explaining settlement patterns has found a large role for first-nature geog-

raphy, as in Rappaport and Sachs (2003), Nordhaus (2006), Nunn and Puga

(2012), Bosker and Buringh (2017), and Alix-Garcia and Sellars (2020). Espe-

cially relevant for our work is Henderson et al. (2018), who demonstrate that

a granular dataset of first-nature geographic characteristics explains roughly

47% of worldwide variation in economic activity as measured by nightlights.

We use this dataset in our empirical investigation of the distribution of geo-
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graphic attributes.

A fourth related literature is that on spatial models, focused on the role

of space, local spillovers, and the importance of trade and interactions be-

tween locations in determining population distributions (Fujita et al., 1999;

Allen and Arkolakis, 2014). Indeed, the largest cities tend to be favorably lo-

cated for trade with other locations.12 Early spatial models such as Krugman

(1991) primarily focused on the role of local population spillovers and trade,

and assumed no differentiation in first-nature geography across locations.13

Modern spatial equilibrium models Allen and Arkolakis (2014) also incorpo-

rate variation in exogenous fundamentals reflecting a differentiated geography.

For certain parameter values, these models can be inverted to recover the

fundamentals given any distribution of population. However, absent a the-

ory for the distribution of fundamentals, this literature cannot explain why

population tends to be distributed similarly in many different contexts. Our

theory of geography-based fundamentals allows us to identify a mechanism for

generating lognormal populations within these models.

At the intersection of these literatures, our work is the first to generate

realistic city size distributions based on heterogeneous geography within a

broad class of spatial models. The paper proceeds as follows. Section 1 argues

that populations are best described by a lognormal distribution and estab-

lishes the link between this distribution and the appearance of a power law

for cities. Section 2 investigates geographic attributes and their distribution

12New York City is located on one of the largest natural harbors on Earth and its
much greater population relative to Lost Springs, Wyoming—the 2020 population ratio
was 8,804,190 to 6—is almost surely related to New York’s favorable geography and the
benefits of its location for trade. Some attributes of landlocked Lost Springs include its low
annual precipitation and a coal mine which last operated in the 1930s.

13In work similar to our own simulated exercises, Brakman et al. (1999) identify a power
law-like population distribution in simulations of a model based on Krugman (1991) with
trade but no differentiated geography.
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Figure 1: The appearance of a power law for top 250 U.S. metropolitan statistical areas
(MSAs) in 2020. Data Source: U.S. Census

within places and across space, modelling locational fundamentals based on

variation in geography. Section 3 demonstrates the lognormality of the pop-

ulation distribution within a broad class of quantitative spatial models when

locational fundamentals are lognormally distributed. Section 4 uses numerical

simulation of the model to demonstrate its ability to capture several results in

the empirical literature on city size distributions. Section 5 concludes.

1 Seeing a Power Law in Populations

The appearance of a power law-like distribution for city populations is a well-

documented feature of human geography. The regularity of its appearance

across countries, the definition of a “city,” and over time means it can rea-

sonably be held as a minimum criterion for a model of the spatial economy14

This distribution is typically illustrated with a simple plot and accompanying

regression. For some truncation of the population distribution to include only

14As articulated in Gabaix (1999b).
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the most populous locations (“cities”), the plot of the log population rank of

a city and the log population of the city often appears strikingly linear, and a

regression given by:

ln(city ranki) = θ0 + θ1 ln(city popi) + ϵi (1)

for many countries delivers a high R2 (over 0.95) and frequently an estimate for

θ1 near -1, as in Figure 1 for U.S. cities. This slope is characteristic of a specific

power law referred to as Zipf’s law, which can be stated as the largest city in

a given country being n times the size of the nth-largest city. Interpreting this

regression as describing the true city size distribution would mean that city

populations follow a Pareto distribution with shape parameter αP = 1 and

minimum city size xm reflecting the choice of truncation point.15

Instead of being a true power law, the city population distribution may

be better characterized by a different distribution which appears similar to a

Pareto distribution for tail observations. Eeckhout (2004) demonstrates that

the full population distribution for the U.S. appears lognormal. We construct

an update to one of the key figures of Eeckhout (2004) in Figure 2, which

shows that this continues to hold for the U.S. in 2010. The tail of a lognor-

mal distribution often appears similar to a Pareto distribution, which can be

understood by considering the lognormal PDF:

f(x) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
(2)

15The estimate of θ1 = −1 means the power law is such that for size X, the probability
that a city is larger thanX is proportional to 1

X . A Pareto distribution with shape parameter
αP = 1 and minimum city size xm gives the necessary P (x > X) = xm

X , which is the Pareto
counter-cumulative distribution function for this αP . The link between the (log) rank-size
plot and the Pareto distribution is established in more detail in Gabaix (2009).
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Figure 2: Histogram of log population for U.S. incorporated places and census designated
places in 2010, with an overlaid normal distribution matching the moments of the empirical
log distribution. The fit of the log population to the normal distribution distribution means
the population distribution appears lognormal. This figure is an update to Figure 2 of
Eeckhout (2004), which uses data from the 2000 Census. Data Source: 2010 U.S. Census

After some algebra (given in Appendix A), this can be rewritten as:

f(x) = ΓLNx
−α(x)−1 (3)

where ΓLN = 1
σ
√
2π

exp
(
− µ2

2σ2

)
and α(x) = ln(x)−2µ

2σ2 . Contrast this with the

PDF of a Pareto distribution:

j(x) = ΓP x−αP−1 (4)

where ΓP = αPx
αP
m , where the minimum city population is denoted xm. The

lognormal PDF in Equation 3 is similar to the Pareto PDF in Equation 4, but

with a scale-varying “shape parameter”-like term. Provided the σ parameter

is large, the value α(x) takes in the right tail will be stable over much of the

tail distribution as the term ln(x) grows logarithmically (Malevergne et al.,

2011).

The Pareto interpretation of the tail of the population distribution appears

dominant in the literature despite its limitations and the strict assumptions it
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necessitates. First, the Pareto distribution is taken to apply to only a subset

of large settlements and not the full population distribution. This requires

truncating a data series with no obvious truncation point. Early studies were

limited to only the largest cities or settlements because of the comparative ease

of accessing population counts for the largest places.16 With more complete

data on population distributions the choice of a truncation point to support

the Pareto interpretation becomes critical and there is no accepted method for

determining such a cutoff. Many researchers rely on a visual test of the data

to determine a cutoff (Gabaix, 2009). Second, beyond the need to truncate

the data to fit a Pareto, models generating a Pareto population distribution

must rely on unrealistic assumptions regarding city growth dynamics. Gabaix

(1999b) obtains a Pareto distribution by assuming that cities cannot fall below

a certain minimum size, such that the otherwise random growth process is

“reflected” at the lower bound.

The lognormal interpretation’s attractive properties stand in direct con-

trast to the shortcomings of the Pareto. Regarding the Pareto distribution’s

inability to match the full population distribution, the lognormal distribution

appears to fit both the body, obviating the need for arbitrary truncation, as

well as the right tail. Further, the scale-varying “shape parameter”-like term

of the lognormal (as shown in Equation 3) can explain commonly observed de-

viations in real-world city size distributions. The likelihood of very large cities

is lower when the true distribution is lognormal than for a similar Pareto, be-

cause the scale-varying “shape parameter”-like term is increasing in x. This

16This is true of early work, such as Auerbach (1913) (while Auerbach had data on many
small settlements, a table in his paper includes just the 94 largest; see the recent translation
in Auerbach and Ciccone (2023)) and Zipf (1949). Even more recent investigation of Zipf’s
law in Krugman (1996), for instance, included just the top 135 cities as the Statistical
Abstract of the United States included only those cities (Eeckhout, 2004).
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appears to match the global city distribution (Rossi-Hansberg and Wright,

2007), as the largest cities in most countries tend to fall below the slope of

the illustrative power law regression line (evident in Figure 1).17 Other char-

acteristics of real-world population distributions, such as the sensitivity of

the estimated slope to the choice of truncation point, are consistent with the

lognormal distribution as well.18

Further, in contrast to the unrealistic conditions necessary to generate a

Pareto distribution, the lognormal distribution can appear under very general

conditions as the result of a central limit theorem. Many random variables

resulting from a multiplicative process tend to lognormality as these processes

are additive in logs (Roy, 1950).19 This is the mechanism by which random

many growth-based models generate a lognormal population distribution, such

as that in Eeckhout (2004). We will use a multiplicative process of this type

in Section 2 to characterize the distribution of locational “quality” based on

random variation in geography.

Less commonly noted is that the lognormal distribution can also appear as

a result of additive processes for certain sequences of positive random variables.

A lemma from Marlow (1967), reproduced below, provides conditions under

17Proponents of the Pareto interpretation have attempted to accommodate this divergence
by arguing that the forces acting on small cities are different from those acting on large cities,
generating different power laws for different sizes of cities. A lognormal distribution naturally
exhibits this deviation without the need to treat subsets of the distribution differently. We
provide a further discussion of the scale variance of the lognormal distribution and its
contrast with the Pareto distribution in Appendix B.

18This property is discussed at length in Eeckhout (2004) and demonstrated in Appendix
Figure A1 where we expand or reduce the number of cities relative to Figure 1. The sensi-
tivity to the truncation point and the lack of a reliable rule for truncating the distribution
suggest that the frequently estimated -1 exponent is unlikely to be a meaningful feature of
the data. For some truncation of tail observations drawn from many lognormal distribu-
tions, the log-rank log-population plot will appear to take a slope of -1 as the exponent in
Equation 3 diverges smoothly.

19For discussion of the many contexts in which a lognormal distribution appears, see
Limpert et al. (2001).
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which a lognormal distribution may appear given a summation of positive

random variables:

Lemma 1 (Marlow, 1967): Let {Sn} be a sequence of positive random

variables. Suppose there exist sequences of positive real numbers {an} and

{bn}, and a distribution F such that

i. At each point of continuity of F , limn→∞ P
{

Sn−an
bn

≤ x
}
= F (x)

ii. limn→∞

(
bn
an

)
= 0

Then at each point of continuity of F , limn→∞ P
{(

an
bn

)
ln
(

Sn

an

)
≤ x

}
= F (x)

Lemma 1 provides conditions for going from a central limit theorem in

levels to one in logs. Condition (i) can reflect convergence under a central limit

theorem, where F (x) is the standard normal distribution and the sequences

an and bn are the mean and standard deviation of some Sn resulting from a

sum of random variables. Condition (ii) then necessitates that the coefficient

of variation of Sn is zero in the limit. Many sums of positive random variables

fulfill this requirement. For a sum that satisfies the conditions for a central

limit theorem and condition (ii), Lemma 1 states that the given normalization

of the sum will converge in distribution to a lognormal. Examples of sums over

several positive random variables (lognormal, truncated normal, and uniform)

are presented in Figure 3, exhibiting the appearance of normality in both

levels and logs for these sums.20 This result is crucial for characterizing the

population distribution within many quantitative spatial equilibrium models,

which we return to in Section 3, as the contribution of trade (which is always

positive) enters the equilibrium condition additively.

20We discuss Lemma 1 further in Appendix A.
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Figure 3: Sums of positive random variables drawn from various distributions.
The random variables in the first row are draw from a lognormal distribution with
parameters µLN = 0, σLN = 1, the middle row from a truncated normal distribution
with parameters µTN , σTN = 0 and minimum value α = 0.001, and the bottom row
from a uniform distribution on (0, 1]. The sums appear distributed normally in both
levels (column 1) and in logs (column 2), as implied by Lemma 1.

The appearance of a power law-like city population distribution is likely

the result of a focusing on the tail of the true lognormal distribution of human

populations. Such an interpretation requires fewer restrictive or arbitrary as-

sumptions and appears to better fit the observed data, both in the body of the

population distribution (which is necessarily ignored by the Pareto interpreta-

tion) and in the tail (which behaves more lognormal than Pareto). The general

conditions under which the lognormal distribution can appear due to random

variation also make it a plausible candidate for the population distribution.

We demonstrate that the equilibrium population distribution within many

spatial models results is lognormal given a realistically modeled geography.
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2 Geography, Attributes, and Fundamentals

An important starting point for understanding the distribution of population is

noting that Earth’s geography is highly varied. Climatic conditions, soil qual-

ity and type, and topography, among many other attributes of a place, vary

greatly around the world and there is clear evidence for observable geographic

attributes, alone and in combination, playing a role in shaping human settle-

ment patterns. The substantial differences between areas of high population

in terms of many geographic attributes suggests that no one particular observ-

able attribute alone is a sufficient proxy for the quality of a place that makes

it good for human habitation. There are highly populous locations which have

steep topographies (La Paz) and those with flat topographies (Houston), those

which are on a coast (Rio de Janeiro) and those which are far from the ocean

(Ulaanbataar), and those which have consistent rain (Dublin) and those which

have little rain (Phoenix).

Despite such heterogeneity across individual attributes within any given

location, those locations that are home to cities must offer some advantage to

their inhabitants relative to other less populated locations. Even though it is

located in a desert and has hot summer temperatures, Phoenix offers a favor-

able topography for a city, regular sunshine, and pleasant winter temperatures.

Indeed, while Phoenix is often presented as an example of a fast-growing city

in an unfavorable, unexpected, or even untenable location, the land where

Phoenix exists now was once home to the Hohokam people who there devel-

oped one of the densest pre-Columbian settlements in North America (Doyel,

2001).21 That is, even if some attribute of a place are not favorable, other

21The Arizona Museum of Natural History website offers a further discussion of the Ho-
hokam people, who constructed complex irrigation canals to support an estimation popula-
tion of as many as 100,000 people in the Phoenix basin 1000 years ago.
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attributes may be—populous places have something going for them, but that

something may be different across different locations. That there are many

different combinations of attributes that can make a place habitable suggests

that a wide variety of attributes contribute to the “quality” of a location.

In this section, we explore how to integrate a realistic geography into quan-

titative spatial models, noting both the geographic heterogeneity of populous

places and two key aspects of the distribution of geographic attributes. First,

while some attributes are correlated (such as high July temperatures and grow-

ing days) there are others that appear unrelated (such as topography and rain-

fall). Second, while geographic attributes tend to be similar for nearby places,

over greater distances there are large differences in the geographic attributes of

locations.22 We explore the implications of variation in geographic attributes

for determining the attractiveness of a location, and then empirically demon-

strate that geographic attributes appear to satisfy key necessary assumptions

to support our modelling decisions.

2.1 Linking Geography and Locational Fundamentals

We now formalize a means of incorporating a more realistic geography into spa-

tial models, providing a microfoundation for the distribution of the locational

fundamentals within these models based on random variation in geography.

Our approach builds on that of Lee and Li (2013), who similarly model a

location’s quality as resulting from many random “factors,” with an added

focus on the spatial distribution of the resulting lognormal fundamentals we

22The geographic and climatic similarities of locations nearby in space reflects the “first
law of geography,” formulated by Tobler (1970) as “everything is related to everything else,
but near things are more related than distant things.”
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integrate into a modern spatial model.23

Observable geographic attributes impact the exogenous productivity and

amenity value of a location, which we refer to as fundamentals. Attributes aitk

are associated with a location i at time t with the type of attribute indexed

by k ∈ K.24 We assume all attributes are strictly positive in value—no place

has less than zero access to water, or completely zero access—and for any k

higher values of aikt reflect better draws.25 We also assume each individual

attribute is drawn from a common distribution in all locations, while different

attributes may differ in their respective distribution.

We model the productivity and amenity fundamentals similarly, and for

brevity focus our discussion on the productivity fundamental before returning

to consider amenities. The locational productivity fundamental for a loca-

tion i at time t, denoted Ait, should be a function of its many attributes aikt:

Ait = F (ai1t, ai2t, ..., aiKt). The productivity fundamental for location i should

be increasing in each aikt, to reflect that better attribute draws increase pro-

ductivity: ∂F
∂aikt

> 0 for all k ∈ K. Further, the aggregating function should

exhibit complementarities between each of the attributes—the benefit of hav-

ing reliable rainfall for production is increased when there is better arable land

in a location, for instance. This means the aggregating function also needs a

positive cross-partial for all arbitrary combinations of attributes: ∂2F (·)
∂aijt∂aigt

> 0,

for j, g ∈ K, j ̸= g.

23Other papers that have adopted the Lee and Li (2013) approach to modeling funda-
mentals include Behrens and Robert-Nicoud (2015) and Desmet and Rappaport (2017),
but these models are also aspatial and do not consider the distribution of the resulting
fundamentals across space.

24We will assume that K is large, as many attributes impact productivity and amenity
values. In applying a central limit theorem later, we will assume K → ∞.

25These should not be thought of as being measured in the familiar units for each attribute.
Rainfall in inches has a nonlinear relationship with agricultural output, for instance, where
we instead want to consider a measure reflecting how positive the “shock” from a given
attribute is.
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Consistent with these assumptions, we can view the contribution of at-

tributes to the fundamental as representing multiplicative “shocks.” The

varying importance of different attribute can be reflected by adopting a Cobb-

Douglas form for the aggregating function, where the powers reflect the weight

placed on the attributes. These weights may change over time to capture

structural transformation or changing production technologies. Allowing the

productivity-relevant weight at time t for attribute k to be denoted ξkt > 0:

Ait =
∏
k∈K

aikt
ξkt

For simplicity, we suppress the t subscript as we are not considering change

over time. Taking the natural log yields the following expression:

ln(Ai) =
∑
k∈K

ξk ln aik (5)

Before aggregating varied attributes to characterize the distribution of Ai,

we impose some distributional assumptions on the attributes so we can apply

a version of the central limit theorem that allows for some correlation among

the attributes aik within each location i. While we can allow for some pairs of

attributes to be correlated with each other within a location (e.g., July tem-

perature and growing days), we require that, over the very large number of

attributes of a place, there exist pairs of attributes which are nearly indepen-

dent (e.g., topography and rainfall). This latter requirement is formalized by

the concept of weak dependence or α-mixing, as defined below.

Definition, α-mixing.: For a sequence x1, x2, ... of random variables, let αn

be a number such that:

|P (A ∩B)− P (A)P (B)| ≤ αn
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for A ∈ σ(x1, ..., xk), B ∈ σ(xk+n, xk+n+1, ...) and k ≥ 1, n ≥ 1. Suppose

αn → 0, the idea being that xk and xk+n are then approximately independent

for large n. In this case the sequence {xn} is said to be α-mixing (Billingsley,

1995).

Together with further restrictions on the moments of the attributes aik and

the rate of α-mixing, we can apply the central limit theorem as in Corollary 1

of Herrndorf (1984), introduced to the spatial literature in Lee and Li (2013),

to characterize the distribution of Ai.

Lemma 2 (Herrndorf (1984): Let {si} be an α-mixing sequence of ran-

dom variables (denote the sequence ᾱi) satisfying the following conditions...

i. E[si] = 0,∀i

ii. limn→∞
E[(

∑n
i=1 ŝi)

2]
n

= σ̄2, 0 < σ̄2 < ∞

iii. supi∈N E[ŝib] < ∞, for some b > 2

iv.
∑∞

i=1(ᾱi)
1− 2

b < ∞

Let Sn =
∑n

i=1 si. Then as n → ∞, 1√
nσ̄
Sn converges in distribution to the

standard normal distribution.

Given these conditions, we can apply Lemma 2 (Corollary 1 of Herrndorf

(1984), or Theorem 3 of Lee and Li (2013)), and as the number of attributes

grows large the log productivity fundamental ln(Ai) will converge in distribu-

tion to a normal distribution and so Ai will be lognormally distributed. Note

that few assumptions are required on the precise distribution of the underlying

geographic attributes. We can allow each attribute to differ in the distribution

from which it is drawn (so long as the moment conditions above are fulfilled),

and we can allow attributes to vary in their degree of correlation with other

attributes within a location (so long as the α-mixing rate restriction holds).
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The amenity fundamental is defined similarly, but we allow for different

weights as the attributes most relevant for determining quality of life may

differ from those influencing productivity. The log of the amenity fundamental,

which has weights given by ιk > 0, is:

ln(Ui) =
∑
k∈K

ιk ln aik (6)

and, given the same conditions as on the productivity fundamental, will also

be lognormally distributed. We assume that the weights and attributes are

such that ln(Ai) and ln(Ui) have a bivariate normal distribution.

Using random variation in geography to model locational fundamentals is

the cross-sectional analog of random growth models based on Gibrat’s law, like

those of Eeckhout (2004) and Gabaix (1999b). Rather than random growth

shocks, here locations receive shocks via random variation in geographic at-

tributes. This approach has been used before in the urban economics literature

but the resulting fundamentals have not previously been integrated into a spa-

tial model.

To do so, we must accurately reflect the distribution of attributes across

locations in modelling the fundamentals. We allow individual attributes to

be spatially correlated across locations, such that nearby locations may have

broadly similar attributes, but require that this spatial correlation declines

with distance. The assumption of spatial correlation does not impact the ap-

plication of the central limit theorem used to characterize the distribution of

fundamentals, which applies only within a location, but has implications for

the spatial distribution of the resulting locational fundamentals. As the un-

observable fundamentals are a function of the observable features of place, we

assume they will have a spatial correlation pattern similar to that of attributes

and exhibit a spatial correlation that declines with distance—this assumption
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help us to characterize the resulting population distribution.

2.2 Empirical Evidence

Next, we empirically investigate the correlation of pairs of attributes within

locations and the correlation of attributes across space. We provide support

for our assumption of weak dependence between attributes within a place, used

to apply the central limit theorem above to characterize the fundamentals, and

the assumption of weak dependence of fundamentals across space, which will

be used in Section 3 to characterize the population distribution.

We use gridded geographic data from Henderson et al. (2018), which in-

cludes a wide variety of first-nature geographic attributes of which we use the

eleven continuous variables.26 The dataset is at the quarter-degree latitude

and longitude cell level and we focus on the roughly 47,000 cells grid cells

in the U.S., Mexico, and Canada, with the nearly 13,000 of those grid cells

contained in the contiguous U.S. serving as our main sample.27

First, we explore the correlation between attributes within a given location

and show that weak dependence of attributes is not an unreasonable assump-

tion, as there exist pairs of attributes which do not appear correlated within

places. We calculate cross-correlations between our attributes for all grid cells

26The variables are ruggedness, elevation, land suitability for cultivation, distance to a
river, distance to an ocean coast, average monthly temperature, average monthly precipi-
tation, distance to a natural harbor, growing days per year, an index of malaria, and total
land area of the grid cell. Variables which were categorical or discrete were excluded from
our analysis. Refer to Appendix C for more information.

27At the equator, a grid cell is ∼28-by-28 km; at 48 degrees latitude, ∼18-by-18 km. The
reduction in the number of attributes and geographic scope does not drastically decrease the
explanatory power of the attributes on economic activity relative to Henderson et al. (2018);
see Appendix Table A1 for a regression showing that our eleven attributes explain 43% of
the variance in economic activity in the contiguous U.S., in line with the 47% Henderson
et al. (2018) found globally with their full set of attributes.
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in the contiguous U.S., as shown in Figure 4a.28 Our results show that the

assumption of weak dependence of attributes appears reasonable given the

pattern of correlations of attributes within locations. While there appears

to be some correlation between some pairs of attributes within locations, the

median correlation among the least-correlated attribute pairs is very near 0.

Next, we demonstrate that while there is correlation within each attribute

across space, this correlation declines to zero as distance increases. We calcu-

late spatial correlation at various distances for grid points within the contigu-

ous U.S., as seen in Figure 4b.29 The spatial correlation of attributes is high

over short distances but as distance increases spatial correlation falls to near

zero. These results suggest spatial correlation of geographic attributes does

decline with distance, supporting the assumption that the fundamentals will

exhibit a similar pattern of declining correlation across space.30

3 Lognormal Populations in Spatial Models

We now describe a quantitative spatial model with lognormally distributed

productivity and amenity fundamentals, where the spatial correlation between

these fundamentals declines with distance. It is a discretized version of the

model in Allen and Arkolakis (2014), which nests a broad class of spatial mod-

els.31 We demonstrate that the equilibrium population distribution within this

model will be lognormally distributed. Populations do not just inherit the log-

28A description of how we calculated cross-correlation is provided in Appendix E
29A description of how we calculated spatial correlation is provided in Appendix E.
30In Appendix D, we also demonstrate that the eleven attributes in our dataset can be

aggregated as described in this section to produce a lognormal “fundamental.” Behrens and
Robert-Nicoud (2015) showed that as few as six attributes can be aggregated to produce a
fundamental that appears lognormal.

31The Allen and Arkolakis (2014) model is based on the two location model presented in
Helpman (1998), generalized to an arbitrary number of locations.
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(a)

(b)

Figure 4: (a) Cross-correlation and (b) spatial correlation structure of U.S. geographic
attributes. The solid black line represents the median correlation; the blue dashed lines
represent the 25th and 75th percentile bands. Data Source: Authors’ calculations using
data from Henderson et al. (2018)

normal first-nature geography in each location, as in prior fundamentals-based

work. Rather, the equilibrium condition in the model includes a weighted

summation over all locations, and so trade between locations plays a key role.

We use the lognormal central limit theorem from Marlow (1967) in order to
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characterize the distribution of this summation and the resulting equilibrium

population distribution.

The world consists of discrete habitable locations indexed by n ∈ N dis-

tributed over a space S, where S is a closed bounded set of a two-dimensional

Euclidean space with the Euclidean norm as its metric.32 Trade between loca-

tions is costly, with trade costs between locations i and n denoted τi,n taking

a symmetric iceberg form such that τi,i = 1, τi,n = τn,i, and τi,n > 1 for i ̸= n.

Trade costs are a function of the instantaneous trade costs incurred along the

least cost path between locations in N while traveling across the surface S

as in Allen and Arkolakis (2014). The instantaneous trade costs of traversing

points in s ∈ S are themselves a function of random variation in geography.33

As a result, a location i’s trade costs with two other locations n and m will be

similar when n and m are close to one another and potentially very different

with n and m are distant from one another. As these costs result from ran-

dom variation in geography and exhibit spatial correlation, τi,n is a spatially

correlated random variable.

Each location has a productivity fundamental Ai and an amenity funda-

mental Ui, which are functions of the geographic attributes aik of each location.

Attributes are at most weakly dependent within a location and their spatial

correlation declines with distance, as argued in Section 2. Aggregating over

the attributes as in Section 2 results in lognormally distributed exogenous

productivity and amenity fundamentals which exhibit declining spatial corre-

lation with distance. A place’s effective productivity and amenity value may

32The choice of a two-dimensional geography is a simplifying one to reflect a realistic
geography, and as in Allen and Arkolakis (2014) the results hold in higher dimensional
spaces. We do not take a stance on the distribution of habitable locations, but require that
no two locations i, n ∈ N exist at the same point in s ∈ S.

33For instance, travel across mountainous regions will incur higher trade cost than travel
across plains or along rivers.
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also be affected by negative or positive population externalities. We define the

“composite fundamentals” as:

Ũi = UiL
β
i (7)

Ãi = AiL
α
i (8)

where the typical case will consist of β < 0 and α > 0, reflecting the negative

impact of overcrowding on amenities and positive productivity spillovers from

agglomeration.

Geography within this model is represented by the set of functions defining

the locational fundamentals, Ã and Ũ , along with the trade costs function

τ defining the spatial relationship between locations in the model. Within

this discrete version of Allen and Arkolakis (2014), we use the term “regular

geography” to describe a geography in which all locations have strictly positive,

finite values for Ã and Ũ , and trade costs τi,n are similarly bounded above and

below by strictly positive numbers between all locations.

We follow Allen and Arkolakis (2014) and assume Armington-style pro-

duction of a differentiated good in each location. There is a population of

homogeneous workers L̄ ∈ R++ who can freely move to any location. Workers

have common constant elasticity of substitution preferences over goods in their

welfare function given by:

Wi =

(∑
n∈N

q
σ−1
σ

n,i

) σ
σ−1

Ũi (9)

where Ũi is the composite amenity fundamental of location i and qn,i denotes

the consumption in i of the good produced in n and σ governs the elasticitiy

of substitution.
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Production is perfectly competitive.34 A worker in location i can produce

Ãi units of the local differentiated good, where Ãi is the composite productivity

fundamental of location i. The number of workers and wages in a location are

given by the functions L : N → R++ and w : N → R++.
35

Based on the CES assumption, we can write the amount of each good

produced in any location i consumed in location n as:

qi,n = Qn

(
pi,n
Pn

)−σ

(10)

where Pn is the price index in location n, given by:

Pn =

(∑
i∈N

p1−σ
i,n

) 1
1−σ

(11)

Given the assumption of perfect competition, pi,n can be expressed as:

pi,n =
τi,nwi

Ãi

(12)

Combining the quantity (Equation 11) and price (Equation 12) expressions,

we can write the value of the good produced in i consumed by n as:

Xi,n =

(
τi,nwi

ÃiPn

)1−σ

wnLn (13)

By the CES assumption we can express welfare in each location as:

Wi =
wi

Pi

Ũi (14)

The value of income in a location must be equal to the value of production:

wiLi =
∑
n∈N

Xi,n (15)

34This model does nest cases of monopolistic competition, as demonstrated in the ap-
pendix to Allen and Arkolakis (2014).

35No location will be unpopulated in equilibrium given the range of parameters we con-
sider.
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The labor market clears: ∑
n∈N

Ln = L̄ (16)

We can then combine the welfare expression (Equation 14), value of consump-

tion expression (Equation 13), and income expression (Equation 15) to get:

Liw
σ
i =

∑
n∈N

W 1−σ
n τ 1−σ

i,n Ãσ−1
i Ũσ−1

n Lnw
σ
n (17)

The welfare expression combined with the price index yields:

w1−σ
i =

∑
n∈N

W 1−σ
i τ 1−σ

n,i Ãσ−1
n Ũσ−1

i w1−σ
n (18)

We now focus on the case of the model with spillovers and externalities, and

demonstrate that the resulting population distribution is lognormal.36 Given

the form of the externalities in Equations 7 and 8, along with free movement

between locations that ensures welfare is equal in all locations (Wi = W̄ for

all i), we can rewrite Equations 17 and 18 as:

L
1−α(σ−1)
i wσ

i = W̄ 1−σ
∑
n∈N

τ 1−σ
i,n Aσ−1

i Uσ−1
n L1+β(σ−1)

n wσ
n (19)

w1−σ
i L

β(1−σ)
i = W̄ 1−σ

∑
n∈N

τ 1−σ
n,i Aσ−1

n Lα(σ−1)
n Uσ−1

i w1−σ
n (20)

With symmetric bilateral trade costs the system can be re-written such that

the equilibrium is characterized by a single equation, as shown in Appendix

A, given by:

W̄ σ−1Lσ̃γ1
i = A

σ̃(σ−1)
i U σ̃σ

i

∑
n∈N

τ 1−σ
i,n U σ̃(σ−1)

n Aσ̃σ
n

(
Lσ̃γ1
n

) γ2
γ1 (21)

where:

σ̃ =
σ − 1

2σ − 1
, γ1 = 1− α(σ − 1)− βσ, γ2 = 1 + ασ + (σ − 1)β

36These results also hold in the model without spillovers (α, β = 0).
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The existence and uniqueness of the equilibrium, and a mechanism for

finding it, are established in Allen and Arkolakis (2014) when γ2
γ1

∈ (−1, 1]

(the discrete case is considered in their online appendix). We focus on this

part of the parameter space, which occurs when α + β ≤ 0.

To simplify notation, denote
(
W̄ 1−σA

σ̃(σ−1)
i U σ̃σ

i

) 1
σ̃γ1 = Ωi and each element

of the summation term τ 1−σ
i,n U

σ̃(σ−1)
n Aσ̃σ

n Lσ̃γ2
n = si,n, where Si =

∑
n∈N si,n. The

equilibrium condition for Li is then:

Li = Ωi (Si)
1

σ̃γ1 (22)

where Ωi is lognormally distributed, as the lognormal distribution is main-

tained over multiplication by positive constants, exponentiation, and multipli-

cation by other lognormal distributions. This result is provided by bivariate

normality of the logged distributions, which we earlier assumed holds for all

Ai and Ui.

The population distribution is invariant to the total population L̄, so we

set L̄ = N so that the average population is equal to 1.37 We make this

normalization such that the population in any particular location does not

fall to 0 as N grows large. We can then characterize the resulting population

distribution by the following theorem.

Theorem 1: Consider a geography as described above with lognormally dis-

tributed fundamentals. For each i ∈ N , define the sequence {ωi,0, ωi,1, ωi,2, ...ωi,N}

such that for n = 0 we define ωi,0 = Ωi and ωi,n = si,n for n > 1. We denote

the demeaned sequence {ω̂i,n} such that E[ω̂i,n] = 0 for all i and n. If, for all

i...

37As proven in Allen and Arkolakis (2014), the population distribution is invariant to
changes in scale, so this choice simply requires multiplying the population vector by a
constant. We discuss this property, and its implications, in more detail in Section 4.
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i. The sequences {ω̂i,n} are α-mixing and fulfill the conditions in Lemma 2

ii. The coefficients of variation for sums over the sequences {ωi,n} fulfill

condition (ii) of Lemma 1

...then, by an asymptotic argument, the population will approach a lognormal

distribution.

Proof: The meaning of the necessary conditions on the demeaned {ω̂i,n} are,

from Lemma 2, that (i) all elements are mean zero, (ii) the contribution of

each element to the variance of the sum over the elements is vanishing (and

the average contribution to the variance of each element is σ̄2 as N → ∞),

(iii) a bound on the higher-order moments, and (iv) a bound on the α-mixing

rate. The condition on the original sequence {ωi,n} is, from Lemma 1, that

(ii) the coefficient of variation of the sums tend to zero.

The proof proceeds as follows. We first show that 1) Si will approach a log-

normal distribution, and then we show that 2) Si will approach independence

from Ωi, such that the population will itself approach a lognormal distribution.

1. If the sequences {ω̂i,n} given by {Ω̂i, ŝi,1, ŝi,2, ...ŝi,n} are α-mixing and ful-

fill the conditions of Lemma 2 for all i, then the sub-sequences {ŝi,1, ŝi,2, ...ŝi,n}

must also be α-mixing and fulfill the conditions of Lemma 2.

For each i, these sequences define Ŝi =
1√
Nσ̄

∑
n∈N ŝi,n, a demeaned and

normalized Si from the equilibrium condition in Equation 22. By the

assumptions on {ω̂i,n}, Ŝi → N (0, 1) as N → ∞. This means that,

defining M̄i = E[Si], we have
1√
Nσ̄

(Si−M̄i) → N (0, 1), where Si is positive

by construction, satisfying condition (i) of Lemma 1. As condition (ii)

holds such that limN→∞
√
Nσ̄
M̄i

→ 0, then M̄i√
Nσ̄

ln
(

Si

M̄i

)
→ N (0, 1) as N →

∞ by Lemma 1.
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By this asymptotic argument, for some large enough N , Si will approach

a lognormal distribution. As the lognormal distribution is maintained

under exponentiation, S
1

σ̃γ1
i will approach a lognormal distribution for

large N .

2. We proceed by noting that if the sequences {ω̂i,n} fulfill the restric-

tions of Lemma 2, this means that the contribution of any particular

element to the sum given by Ôi = 1√
Nσ̄

∑
n∈N ω̂i,n is negligible, so no

one element dominates the distribution. We define a truncated sum

Ôm
i = 1√

Nσ̄

∑
(n>m)∈N ω̂i,n, and note that Ŝi = Ô0

i .

By α-mixing, as m → ∞, we have ω̂i,1 ⊥⊥ ω̂i,m (alternatively expressed,

Ω̂i ⊥⊥ ŝi,m). Define m = ⌊N 1
3 ⌋, so as N → ∞, m → ∞ but at a slower

rate such that...

lim
N→∞

Ôi − Ôm
i =

ω̂i,1 + ...+ ω̂i,m√
Nσ̄

≤ |ω̂i,1|+ ...+ |ω̂i,m|√
Nσ̄

≤ m ·max1≤j≤m(ω̂i,j)√
Nσ̄

= 0

...as limN→∞
m√
N

→ 0. Thus, as N → ∞, Ôi = Ôm
i . As the above also

holds for any m′ ∈ Z, it is also true that Ôi = Ŝi as N → ∞.

As N → ∞, all elements of Ôm
i are independent of Ω̂i, and so Ω̂i ⊥⊥ Ôm

i ,

which by equivalence with Si in the limit means that Ω̂i ⊥⊥ Ŝi.

As independence is maintained under the continuous transformation of

raising Si to a positive power, this asymptotic argument implies that, as

N grows large, Ωi and S
1

σ̃γ1
i approach independence.

Given the asymptotic arguments above, S
1

σ̃γ1
i will approach a lognormal and

Ωi and S
1

σ̃γ1
i will approach independence for all i as N grows large. As such,
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these two lognormal terms have a bivariate normal distribution in logs. The

population Li will then appoach a lognormal as N grows large, as it results

from the product of two independent lognormal random variables, as shown

in Equation 22. ■

The assumption of α-mixing requires that, as the distance between two

locations i and m increases, the dependence between the own-lognormal term

Ωi =
(
W̄ 1−σA

σ̃(σ−1)
i U σ̃σ

i

) 1
σ̃γ1 and the trade-related contribution from location

m given by si,m = τ 1−σ
i,m U

σ̃(σ−1)
m Aσ̃σ

m Lσ̃γ2
m falls to zero. This assumption ap-

pears reasonable, as the fundamentals and populations in one location will be

virtually unrelated to those in distant locations.

The proof is an application of Lemma 1 and Lemma 2, allowing us to

characterize the distribution of the sum Si in the equilibrium condition as log-

normal in the limit, and the independence of the own-lognormal term and the

trade contribution in the limit. The population is then given by the product

of two independent lognormally distributed random variables, and will itself

follow a lognormal distribution. The conditions necessary are limited. We

show via simulation that, given standard parameter values, these conditions

appear to hold, result in lognormal population distributions, and fulfill the

predictions of the theorem— the distribution of Si appears normal in both

levels and logs, as predicted by Lemma 1, and Ωi and S
1

σ̃γ1
i are uncorrelated

as implied by independence.

4 Results

We now demonstrate that the model is successful at generating lognormal

population distributions and power law-like city size distributions via numer-
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ical simulation. We provide comparative statics based on varying parameter

values across simulations to document how changes in congestion, spillovers,

and trade costs influence the observed power law. We identify changes to the

power law in the directions implied by the empirical literature. Finally, we

show that Gibrat’s law holds within the model when the aggregate population

increases, showing that size-invariant growth is a feature of the equilibrium

distribution.

4.1 Simulation of the Population Distribution

We first simulate the model to demonstrate that the resulting populations are

indeed lognormally distributed and that the city size distribution appears to

follow a power law. Each location in the model should be interpreted as a

settlement, which can potentially be any size.38 We define the most populous

5% of locations as “cities” within the model, to demonstrate that the tail

behavior of the resulting population distribution mirrors the appearance of a

power law in empirical city size distributions.

Dispersion in trade costs play a key role in ensuring that realizations of

the trade contribution for locations i, j become nearly independent as the

distance between these locations dij grows large, as required by the proof. To

ensure dispersion in trade costs which is consistent with the triangle inequality,

we model settlements as occurring randomly over a large surface and take

the euclidean distance between all settlements. This modelling choice can be

interpreted as either the “effective” distance, which reflects the difficulty of

travelling across some parts of the geography, or variation in seed locations

of settlements over a geography with identical trade costs at all points in

38This interpretation matches that in Redding and Rossi-Hansberg (2017), which frames
locations as regions which can potentially hold a single settlement.
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the surface.39 We simulate a large geography and discard those settlements in

border regions to limit the impact of border effects on the distribution. We are

left with a central geography consisting of approximately 20,000 settlements.40

In simulating the model, we take model parameters from the literature and

from Allen and Arkolakis (2014) where possible.41 We first create randomly-

generated draws of exogenous productivity and amenity fundamentals with

declining spatial correlation. Fundamentals are drawn from lognormal dis-

tributions with parameters σLN = 1 and µLN = 0, and we induce spatial

correlation using a Choleski decomposition.42 We allow the productivity and

amenity fundamentals to be correlated, as while these are constructed using

different weights as in Section 2 there could still be some degree of correlation

between the two fundamentals.43

The magnitude of local productivity spillovers is given by α = 0.03.44

The model contains an isomorphism which we use to parameterize congestion

costs. As discussed in Allen and Arkolakis (2014), the model is isomorphic

to one with a fixed quantity of housing where spending on housing is δ and

β = − δ
1−δ

. Congestion costs are parameterized to match a level of spending

39We could alternatively model trade costs as having an idiosyncratic component to ensure
dispersion. We choose the more restrictive setting without an idiosyncratic component to
demonstrate that only a limited degree of dispersion is necessary.

40We uniformly distribute 30,000 settlements across a 1200-by-1200 grid and discard those
within 100 cells of a border. This leaves an expected number of settlements of 100

144 ∗30000 =
20, 833.3̄. We draw a new distribution of randomly drawn distributions of fundamentals
each simulation.

41In Appendix D we additionally plot the recovered county-level exogenous fundamentals
from Allen and Arkolakis (2014), which appear lognormal.

42We assume the degree of spatial correlation of the log-scale fundamental declines expo-
nentially, so that ρij = e−δρdij . For j = i, this gives ρii = 1 as dii = 0. We set δρ = 0.5.

43We allow for correlation between productivity and amenity fundamentals of ρAU = 0.12
in the simulations here, in line with the correlation between inverted fundamentals from
Allen and Arkolakis (2014). The result is not sensitive to the choice of correlation between
productivity and amenities.

44This is in line with the estimates in Combes et al. (2008) and those surveyed in Rosenthal
and Strange (2004) and Combes and Gobillon (2015).
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on housing of 25% of income, which gives a congestion parameter of β = −1
3
.45

We model trade costs as an exponential function of distance, τij = eδTCdij and

set δTC = 0.001.46 We vary these parameters in Appendix F.

We take draws for productivity and amenity values, parameterized as

above, and simulate population distributions within the model to demonstrate

that the resulting population distribution appears lognormally distributed.

First, we check that the summation term Si behaves as predicted by Lemma

1 and the conditions in Theorem 1, which imply that this term should appear

normal in both levels and logs and approach independence from the own-

lognormal term for each location. We demonstrate this by plotting the his-

togram of values of Si for a given geography in both logs and levels, along with

the respective QQ plots comparing both to a normal distribution, in Figure 5.

The distribution in Figure 5 displays the expected patterns, with a good fit

to the normal distribution in both levels and logs as implied by Theorem 1.47

The average correlation betweel Ωi and S
1

σ̃γ1
i over the 100 replications is 0.018,

indicating the two terms are virtually uncorrelated as implied by the proof.48

Figure 6 shows the equilibrium population distribution associated with

a random draw of productivity and amenity fundamentals. The log of the

population distribution very closely matches the overlaid normal distribution,

demonstrating lognormality. The upper-right panel shows a quantile-quantile

(QQ) plot of the log population and a normal distribution, demonstrating very

close fit throughout the full distribution.

45This is consistent with the estimates in Combes et al. (2019) and Davis and Ortalo-
Magné (2011).

46Allen and Arkolakis (2014) find that the cost of road travel is .56 when the width of the
continental U.S. is normalized to 1. The geography we simulate has a width of 1000, which
would imply a scaled parameter of 0.00056, near the value we choose.

47The smaller than expected right tail may be attributable to too little dispersion in trade
costs or the size of the grid we simulate.

48While not a sufficient condition for independence, no correlation is necessary condition.

33



Ln(S
n

), Histogram

11.5 12 12.5 13 13.5
0

0.5

1

1.5

2

2.5

3

S
n

, Histogram

0 2 4 6

10 5

0

0.2

0.4

0.6

0.8

1

1.2
10 -5

-5 0 5

Quantiles of normal Distribution

-5

0

5

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Distribution

-5 0 5

Quantiles of normal Distribution

-5

0

5

Q
ua

nt
ile

s 
of

 In
pu

t S
am

pl
e

QQ Plot of Sample Data versus Distribution

Figure 5: The figures above show a realization of the vector of Si terms for some exogenous
geography and associated population vector. The distribution of Si appears normal in both
levels and logs.

Concentrating only on the most populated 5% of locations, we find the

model generates power law-like population distributions like those commonly

identified in the data. Given the lognormality of the population distributions,

the most populated locations in our model will appear to follow a power law

distribution as demonstrated in Section 1. The log rank-size regression on this

simulated data gives a slope of -0.977, close to the classic Zipf’s law result of

a slope of -1 for this particular random draw of fundamentals.

We next demonstrate the robustness of the approximate lognormal pop-

ulation distribution by performing 100 Monte Carlo simulations, each time
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Figure 6: Example of the equilibrium population distribution. The top left panel shows
the model’s log population appears to follow a normal distribution. The top right panel
contains a QQ plot of the model’s log population distribution, indicating that it very closely
matches a normal distribution. The power-law plot at the bottom shows a strong resem-
blance to the typical log rank-size plot along with the characteristic divergence of the largest
locations below the trendline.

Kolmogorov–Smirnov Lilliefors Jarque–Bera
Rejected at 1% 0.00 0.02 0.22
Rejected at 5% 0.00 0.1 0.40

Table 1: Table shows the share of tests for a normal distribution rejected for the log
equilibrium population of 100 Monte-Carlo simulations.

drawing a new randomly generated geography. Figure 7 displays smoothed

results over 100 simulations of the model.49 The QQ plot also demonstrates

49The log of population is averaged at each rank of the distribution over the 100 simula-
tions. Results are similar when averaging the population and taking the log.
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Figure 7: Results from smoothing the output over 100 Monte Carlo simulations of the
model. The population distribution resulting from numerical simulation of model is in the
left panel, and the resulting QQ plot is on the right. Both show that the equilibrium
population distribution appears lognormal.

lognormality of the expected log population over these simulations. We test

each of the 100 simulated population distributions against the null hypothe-

sis that the logged population distribution is normally distributed using the

Kolmogorov-Smirnov, Lilliefors, and Jarque-Bera tests. The results of these

tests are given in Table 1. None of the tests reliably reject the normal dis-

tribution. Rejections of normality occur most often under the Jarque-Bera

test, which tests for skewness and kurtosis. A degree of kurtosis is evident in

the QQ plot as both tails appear slightly heavier than a normal distribution,

which may be attributable to the finite grid.50

50The higher rejections under the Jarque-Bera may also be attributable to the inappro-
priateness of this test for spatial data, similar to its inappropriateness for time series data
documented in Bai and Ng (2005).
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∂θ1
∂α

∂θ1
∂β

∂θ1
∂δTC

Sign of Change + − +

Table 2: Direction of the change in slope coefficient in the (log) rank-size regression for
changes in α, β, and δTC , holding other parameters constant. “+” means the estimated
slope has become flatter (larger largest cities), while “−” means the slope has become
steeper (smaller largest cities).

4.2 Comparative Statics

We next perform comparative statics on the estimated power law coefficient

for the city size distribution, testing the sensitivity to changes in model pa-

rameters. Changing these parameters alters the estimated coefficient of the

log rank-size regression, which we denote θ1 as in Equation 1. We perform

100 Monte Carlo simulations for each of 150 combination of parameters.51 A

summary of the signs of changes is provided in Table 2.

The comparative statics of our model demonstrate changes in the estimated

power law coefficient in line with the empirical evidence. Increasing the ben-

efits of agglomeration α results in a flatter slope (greater dispersion, or larger

biggest cities) and increasing local congestion costs β results in a steeper slope

(less dispersion, or smaller biggest cities). Increasing trade costs by increas-

ing the rate at which these costs increase with distance, δTC , likewise results

in a flatter slope. The flatter slopes for developing countries (documented in

Duben and Krause (2021)) may be attributable to high domestic transporta-

tion costs, which are often substantially higher than in developed countries

(Atkin and Donaldson, 2015). Additionally, the flattening slope in the U.S.

in recent decades (documented in Gabaix and Ioannides (2004)) could be a

result of increased agglomeration benefits in the modern services economy.

51We simulate for 5 values of α, 6 values of β, and 5 values of δTC given in Appendix F.
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4.3 Gibrat’s Law

Allen and Arkolakis (2014) demonstrate that the population vector is scaled by

changes in the population. We now demonstrate that based on this property

the equilibrium population distribution demonstrates proportional growth and

satisfies Gibrat’s law in response to increases in the aggregate population L̄.

The system of equations describing the population distribution, given for

a particular location i in Equation 21 can be expressed in matrix form as:

θh = J[h]
γ2
γ1 (23)

where θ = W̄ σ−1, each element of the vector h is given by hi = Lσ̃γ1
i , and [h]

γ2
γ1

indicates raising each element of the vector h to the power γ2
γ1
. The matrix J ,

where Ki,n = A
σ̃(σ−1)
i U σ̃σ

i τ 1−σ
i,n Aσ̃σ

n U
σ̃(σ−1)
n , is given by...

J =


K1,1 K1,2 . . . K1,N

K2,1 K2,2 . . . K2,N

. . . . . . . . . . . .

KN,1 KN,2 . . . KN,N


We can write Equation 23 as

h̃ = J ˜[h]
γ2
γ1

where h̃i = hiW̄
σ−1

1− γ2
γ1 . This must hold for any level of L̄. As a result, changing

L̄ does not impact the resulting population distribution even as it impacts

welfare (W̄ , which is the same across all locations). A percentage increase in

overall population will result in each location experiencing population growth

of the same percentage. That is, population growth rates are unrelated to

initial population and Gibrat’s law holds within the equilibrium of this model

as the aggregate population increases.
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This is a key difference between our explanation for observed population

distributions based on locational fundamentals and trade and the prior lit-

erature on random growth models. Rather than being the force creating the

equilibrium distribution, random growth is a feature of an equilibrium based on

underlying geography. This view that is supported by the absence of Gibrat’s

law in systems that are in transition or have suffered disequilibrating shocks

(Desmet and Rappaport, 2017; Davis and Weinstein, 2002, 2008).

5 Conclusion

The power law-like distribution of city populations is a striking empirical reg-

ularity that holds across countries and millennia. In this paper, we demon-

strated that a broad class of economic geography models generate these char-

acteristic population distributions when modeled with a realistic geography.

We integrate insights from economic geography theory regarding the impor-

tance of both place and space into the extensive literature on power law-like

population distributions and Zipf’s law. Viewing population distributions as

arising naturally in response to favorable geography and trade access provides

a simple explanation for the emergence of the characteristic shape of the city

size distribution. This explanation is consistent with the persistence of human

settlements, the recovery of cities from disasters, and the random growth of

cities in equilibrium.
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FOR ONLINE PUBLICATION

A Main Text Proofs

A.1 Algebra for Pareto-form of Lognormal PDF

The density function of a lognormal distribution is given by:

f(x) =
1

xσ
√
2π

exp

(
−(ln(x)− µ)2

2σ2

)
Expanding the square and grouping the ln(x) terms yields:

f(x) =
1

xσ
√
2π

exp

(
ln
(
x(

− ln(x)+2µ

2σ2 )
)
− µ2

2σ2

)
Applying eln(a

b) = ab and combining with x−1:

f(x) =
1

σ
√
2π

exp

(
− µ2

2σ2

)
x−( ln(x)−2µ

2σ2 )−1

Writing the constant term 1
σ
√
2π

as Γ, the lognormal distribution can be written

as:

f(x) = Γx−α(x)−1 , where α(x) =
ln(x)− 2µ

2σ2

which is the same as Equation 3 in the main text. The representation of the

lognormal PDF here appears in Malevergne et al. (2011), and is similar to that

in Eeckhout (2009).
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A.2 Discussion of Lemma 1 (Marlow, 1967)

A demonstration of the apparent normality in both levels and logs of sum

of positive random variables is included in the main text in Figure 3, which

shows the sums of lognormal (exp(N(0, 1)), truncated normal (a standard

normal trunated at 0), and (0,1] uniform random variables. The sums of these

random variables converge to normal distributions, while the log of the sum

also appears to follow a normal distribution.

There appears to be a contradiction in the Marlow result, as it implies a

sum of positive random variables can be viewed as converging in distribution

to either a lognormal or normal distribution.

However, if we are considering both the normal and lognormal approxima-

tions for a sum of positive random variables we can demonstrate convergence

of the lognormal approximation to the equivalent normal approximation—that

is, the lognormal and normal approximation will be identical in the limit. The

following draws on Mazmanyan et al. (2008).

For simplicity, consider an approximation of i.i.d positive random variables

with meanm and variance s2. The normal approximation will have parameters

µN = nm = M and σ2
N = ns2. We will now define the parameters for the

lognormal approximation of the sum.

First, define the coefficient of variation as...

Cv =

√
ns2

nm
=

√
ns

nm
(24)

As n grows large, Cv → 0.

The parameters µX and σX of the lognormal approximation can be found

by...

σ2
X = ln(1 + C2

v ) (25)
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µX = ln(nm)− σ2
X

2
(26)

As Cv → 0 when n → ∞, eq. (31) gives that as n → ∞...

σ2
X → C2

v , so σX → Cv , and σX → 0 (27)

Now we demonstrate that the lognormal approximation converges to the

expected normal. As, for some m, P (||x−M || > ϵ|n ≥ m) = 0, so x
M

→a.s. 1.

We can write x
M
·σX →

√
ns

nm
, and so xσX →

√
ns = σN . This means 1

xσX

√
2π

→
1

σN

√
2π
.

Similarly, x = xM
M

, so ln(x) = ln(M)+ln( x
M
). As x

M
→ 1, so ln( x

M
) → x−M

M
.

As µX = ln(M)− σ2
X

2
, and σX → Cv → 0, and M = µN then we have...

ln(x)− µx

σX

→
ln(M) + (x−M

M
)− ln(M)

σX

=
x−M

MσX

→ x−M

M · Cv

=
x− µX

σN

(28)

So we have shown, as n → ∞...

f(x) =
1

xσX

√
2π

e
− 1

2

(
ln(x)−µX

σX

)2

→ 1

σN

√
2π

e
− 1

2

(
x−µN
σN

)2

(29)

So as n increases, the lognormal approximation to the sum approaches the

normal approximation.

46



B Pareto vs. Lognormal Simulations

We provide additional evidence for the lognormality of the true population

by focusing on the behavior of the distribution in the tail. As discussed in

Eeckhout (2004), one characteristic of the lognormal as compared to the Pareto

is the sensitivity of the estimated coefficient to the truncation point. This can

be see in Figure A1, where selecting alternative truncation points changes the

estimated power law coefficient. When including more cities (Panel A) the

coefficient rises, and when including few cities the coefficient falls. This is in

line with the expected behavior of the scale-varying “shape parameter”-like

term of the lognormal distribution in Equation 3.

0

2

4

6

ln
(R

an
k)

12 14 16 18
ln(Population)

(Full trendline)

n = 387    RMSE =  .1352634

lnRank = 16.553 - .9104 lnPop    R2 = 98.1%
A. US MSAs, over 100k population

0

1

2

3

4

5

ln
(R

an
k)

13 14 15 16 17
ln(Population)

(Full trendline)

n = 110    RMSE =  .1523178

lnRank = 19.492 - 1.1161 lnPop    R2 = 97.4%
B. US MSAs, over 500k population

Figure A1: Alternative truncation points for the distribution of U.S. MSAs. Altering
the truncation point substantially influences the estimated power law coefficient, as can be
seen by contrasting with Figure 1. Data Source: U.S. Census

The scale variance of a lognormal distribution can offer evidence for the

lognormal interpretation of the population distribution. When the true popu-

lation is lognormal, large economies or regions (those containing many cities)

should systematically contain smaller large cities than predicted by the esti-
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mated power law. We first demonstrate this property of the two distributions

via Monte Carlo simulation in Figure A2. We calibrate a lognormal distri-

bution to match a Pareto distribution with shape parameter αP = 1 in the

tail.52 We calculate the slope at several scales excluding the top 25% of cities,

to demonstrate the tail divergence of the lognormal resulting from its scale-

variance, in contrast to the scale-invariant Pareto. When the tail is constructed

to contain 100 cities, the difference between the two plots is minimal. How-

ever, when the tail is constructed to have 800 cities, cities in the far tail of the

lognormal fall well below the estimated trendline.

We can repeat this exercise with data. In Figure A3, we again plot U.S.

MSAs to illustrate the lognormality of the U.S. city distribution. We focus on

two properties of the lognormal tail that contrast with the Pareto. The lognor-

mal tail will be sensitive to the truncation point (as demonstrated by Eeckhout

(2004)), and the largest cities will be smaller than predicted. Choosing two

alternative truncation points from that in Figure 1, the estimated power law

coefficient falls (when including more small cities) and increases (when includ-

ing fewer small cities) while the R2 remains similarly high. These deviations

are in line with expectations if the true underlying distribution were lognor-

mal and demonstrate that, while the -1 exponent can be found for a particular

truncation point (as in Figure 1), it does not appear to be a meaningful feature

of the distribution. Next, we consider deviations in the far tail by excluding

the largest cities. In both cases, nearly all top quarter cities fall below the

52The lognormal parameter σLN = 2.6 used for these simulations is similar to that result-
ing from simulation of the model (in Section 4) for standard parameter values in the litera-
ture. This value is larger than that identified by Eeckhout (2004) (who finds σLN = 1.75).
The difference could partially be attributed to differing truncation points, along with the
empirical difficulty of evaluating the population of small locations and the lower bound on
real-world populations of 1.
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Figure A2: Comparison of Lognormal (left) and Pareto (right) for simulated small,
medium, and large “countries.” The LN is truncated for cities 2 standard deviations above
µLN , and the Pareto has a minimum value equivalent to this truncation point with shape
parameter αP = 1. The slope in each plot is calculated excluding the top 25% of cities
in each country, and the bands contain 95% of the observed values at each rank over 1000
simulations. At small scales, the lognormal distribution at Pareto distribution are largely
indistinguishable. However, scale variance of the LN leads to substantial divergence in the
tail. At larger scales (large countries with more large cities), if the distribution is draw from
a LN distribution the large cities tend to fall below the trendline (with trend above the 95%
band) while the the Pareto distribution does not diverge.

trendline predicted based on the rest of the distribution.53 The magnitude

of the systematic divergence is very large, which is obscured on the log scale.

If the Pareto were the true distribution, panel B indicates a cumulative 494

million people missing (in expectation) from the top 25% of U.S. cities, sub-

53Of top-quarter MSAs, 94 of 97 MSAs in panel B and 27 of 27 MSAs in panel D are
below the respective trendlines in Figure A3
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Figure A3: The top panels (A and B) show the 388 U.S. MSAs with a population over
100k in 2020. The bottom panels (C and D) show the 110 MSAs with a population over
500k in 2020. Panels A and C display the trendline for the full distribution and Panels
B and D display the trendline excluding the top 25% of MSAs (in orange) in each panel.
Altering the truncation point substantially influences the estimated coefficient, as can be
seen by contrasting Panels A and C with Figure 1. Further, nearly all top quartile MSAs
falling below the trendline (94 of 97 MSAs in panel B and 27 of 27 MSAs in panel D are
below the respective trendlines). Both are consistent with the U.S. population distribution
being lognormal. Data Source: U.S. Census

stantially more than the entire U.S. population, while panel D indicates an

absence of 169 million people, roughly half the U.S. population.54

54Repeating this exercise with other large countries (India, China, and Brazil) using
standardized city definitions from Dingel et al. (2021) indicates similarly large divergences
in the tail, all in the expected direction (cumulative absences of 135 million, 53 million, and
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C Data

C.1 Data Description

In this section, we list the variables we used in Section 2 for our correlation

matrices and tables. The data come from the publicly-available data associated

with Henderson et al. (2018).

1. Ruggedness: index measure of local variation in elevation. Originally

computed by Nunn and Puga (2012) with corrections made in Henderson

et al. (2018).

2. Elevation: above sea level, meters

3. Temperature: average from 1960-1990 of monthly temperatures, Celsius

4. Precipitation: average from 1960-1990 of monthly total precipitation,

mm/month

5. Land Suitability: propensity of an area of land to be under cultivation

based on separate measures of climate and soil quality

6. Distance to Coast: distance to the nearest coast, km

7. Distance to Harbor: distance to nearest natural harbor on the coast, km

(great circle)

8. Distance to River: distance to nearest navigable river, km

9. Malaria: index of the stability of malaria transmission

10. Land Area: grid cell area covered by land, km2

11. Growing Days: Length of agricultural growing period, days/year

8 million respectively).
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D Aggregating Attributes to Fundamentals

D.1 Calculating the Fundamental

For every attribute in our data set which has a minimum value less than or

equal to 0, we re-define the attribute using an affine transformation to put

the minimum ≈0.1. We then construct the “worst-to-best” ordering of our

attribute values according to the sign on each attribute from a regression on

attribute influence on economic activity as found in Henderson et al. (2018),

Table 1. Attributes whose sign was positive we perform no additional trans-

formations to. Attributes whose sign was negative we invert. We use the signs

present in that table, as opposed to signs from a smaller regression of our

subset of attributes on U.S. economic activity, because we believe the signs in

their regression could plausibly be more robust world-wide.

After choosing our attribute value ordering, we then standardize the nat-

ural log of our attributes:

ln(aik)−mean (ln(ak))

sd(ln(ak))

where mean (ln(ak)) is the mean of that attribute across all locations and

sd ln(ak) is the standard deviation. This produces logged attributes which are

mean 0 and standard deviation 1.

We then aggregate our attributes into a fundamental given by Equation 5:

ln(Ai) =
∑
k∈K

ξk ln(aik)

setting ξk = 1, ∀k.
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D.2 Summary Statistics

Figure A4: Summary statistics for ordered geographic attributes for data points in the
contiguous United States. Data Source: Authors’ calculations using data from Henderson
et al. (2018)

D.3 Results

We plot in Figure A5 the empirical PDF of the resulting distribution of pro-

ductivity fundamentals, calculated according to Equation 5 with ξk = 1, ∀k.

The log of the empirical “fundamental” here is closely fit by a normal distri-

bution, supporting the claim that aggregating weakly dependent and spatially

correlated attributes can result in lognormal fundamentals, both in theory and

in the data.
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Figure A5: Lognormal distribution of locational fundamentals. All eleven attributes
were ordered worst to best in terms of contribution to economic activity, logged, then
standardized. The fundamental is calculated as the standardized sum of the standardized,
ordered log attributes. The mean and variance are standardized to zero and one and a
standard normal curve is overlaid. Data Source: Authors’ calculations using data from
Henderson et al. (2018)
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D.4 Recovered fundamentals from Allen and Arkolakis

(2014)

We plot the exogenous productivity and amenity values recovered in Allen

and Arkolakis (2014). These are at the county-level. County populations are

roughly lognormally distributed, as seen in Figure A6. The resulting funda-

mentals recovered by Allen and Arkolakis (2014), as seen in Figure A7, also

appear roughly lognormally distributed. The correlation between A and u is

≈0.12, which we use to parameterize our simulations.
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Figure A6: County populations in the United States. Data Source: online replication
package from Allen and Arkolakis (2014).
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Figure A7: Top panel shows distribution of exogenous productivities at the county-level
in the United States; bottom panel for exogenous amenities. Data Source: online replication
package from Allen and Arkolakis (2014).
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D.5 Regression of Economic Activity on Attributes

Dependent variable:

(Log of) Radiance

(Inv) Ruggedness 0.104
(0.020)

Elevation −1.279
(0.057)

Land Suitability 0.298
(0.039)

(Inv) Dist to River −0.079
(0.024)

(Inv) Dist to Coast −0.135
(0.034)

Temperature −0.607
(0.195)

(Inv) Precipitation 0.357
(0.082)

(Inv) Dist to Harbor 0.006
(0.049)

Growing Days 1.722
(0.090)

(Inv) Malaria −0.060
(0.046)

Land Area 0.401
(0.068)

Constant −0.340
(1.102)

Observations 13,426
R2 0.431
Adjusted R2 0.430
Residual Std. Error 2.294 (df = 13414)
F Statistic 922.395 (df = 11; 13414)

Table A1: Grid-cell radiant lights on attributes, contiguous United States. (Inv) indicates
the attribute data was inverted. The R2 from this regression is comparable to the main
regression from Henderson et al. (2018). Data source: Authors’ calculations based on data
from Henderson et al. (2018)
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E Correlation Calculations

Cross-Correlations For every attribute type k, we calculate

corr(ai,aj), ∀i, j ∈ K, j ̸= k, where ak is a vector for each attribute type

comprised of attribute values aik for every location i. This exercise tells us how

correlated each attribute is with each other attribute within locations, giving

an indication of how dependent realizations of geographic attributes may be

on one another.55

Spatial Correlation To calculate spatial correlations within attributes, we

construct rings at varying distances d (in miles) from every grid cell i in the

contiguous U.S.; we refer to a location i around which rings are being drawn as

a centroid. These rings define a collection of grid points in the U.S., Canada,

and Mexico at a given buffered distance (d−10, d+10) for each centroid.56 We

then select a random point, called i∗(d, k), from within each ring of distance

d from every centroid i, to construct our sets of points to calculate the cor-

relations; we re-draw a random point for each attribute k for every centroid.

Mathematically, our calculation for the correlation within an attribute type k

between our set of centroids and our set of points at distance d takes the form

corr(ak,adk), ∀k ∈ K, ∀d, where ak is a vector of attribute values aik for

attribute type k for all centroid locations i in our sample, and adk is a vector

of all attribute values ai∗(d,k)k, the randomly-selected points for each centroid

i at distance d for each attribute type k.

55We do not know the full suite of attributes that characterize a location’s productivity,
and in our limited panel we have some attributes which are mechanically correlated within
a location (such as average temperature and growing days).

56The spatial correlation in attributes between points at distance d = 100 miles should be
interpreted as “the correlation between a point and a randomly-selected point 90–110 miles
away”. The buffer is to ensure there are eligible points at roughly the desired distance.
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F Additional Simulations

We verify the robustness of the power law coefficient estimate through Monte

Carlo simulations. As seen in Figure A8, the average estimated power law

coefficient from the (log) rank-size regression across the 1000 simulations is

-0.95, with a standard deviation of 0.03. 90% of estimated coefficients are

between -0.900 and -1.004. Performing the (log) rank-size regression on the

smoothed distribution delivers a slope of -0.95. The parameter values used

here are consistent with the literature, as is the truncation point, and estimates

come very near Zipf’s law.

Even though our model, using standard parameters from the literature,

closely approximates the Zipf’s law coefficient of -1, we maintain our argument

that the estimated coefficient should not be taken as support for cities being

Pareto distributed. Changes in scale and the truncation point can influence

the estimate, as discussed in Section 1. Nonetheless, it is interesting to note

that the estimated power law exponent appears consistent with Zipf’s law for

typical parameter values in the literature.

In the simulations for varying parameter values, we take all combinations of

α = [0.02, 0.04, 0.06, 0.08, 0.1], β = [−0.25,−0.30,−0.35,−0.40,−0.45,−0.50],

and δTC = [0.0005, 0.001, 0.0015, 0.002, 0.0025]. For each combination, we find

the population distribution for 100 draws of the exogenous geography in a

grid of the same dimensions as for our main results. The sign of change in the

estimated exponent associated with changing a parameter, holding the other

parameters fixed, is reported in Table 2 in the main text.
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Min -1.034
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25pct -0.971
Median -0.951
75pct -0.930
95pct -0.900
Max -0.875

Figure A8: Monte Carlo average over model output (Left), and statistics over model
simulations (Right). The slope on the left represents the slope taken over the average
of log(pop) at each rank over 100 simulations, and the bounds contain 95% of the log
populations at each rank of the distribution. The table displays statistics over the 100
estimated power law coefficients from the simulations.
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